
Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

Preprint

UCRL-CONF-200095

A Comparison of

Dimensionality Reduction

Methods for Retrieval of

Similar Objects in Simulation

Data

Erick Cantú-Paz
Sen-ching S. Cheung
Chandrika Kamath

This article was submitted to 2004 SIAM Data Mining
Conference

September 23, 2003

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work
sponsored by an agency of the United States Govern-
ment. Neither the United States Government nor the
University of California nor any of their employees,
makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, ap-
paratus, product, or process disclosed, or represents
that its use would not infringe privately owned rights.
Reference herein to any specific commercial product,
process, or service by trade name, trademark, manu-
facturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favor-
ing by the United States Government or the Univer-
sity of California. The views and opinions of authors
expressed herein do not necessarily state or reflect
those of the United States Government or the Uni-
versity of California, and shall not be used for adver-
tising or product endorsement purposes.

This is a preprint of a paper intended for pub-
lication in a journal or proceedings. Since changes
may be made before publication, this preprint is made
available with the understanding that it will not be
cited or reproduced without the permission of the au-
thor.

This research was supported under the auspices
of the U.S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory
under contract No. W-7405-Eng-48.

Approved for public release; further dissemination
unlimited

A Comparison of Dimensionality Reduction Methods for Retrieval of Similar

Objects in Simulation Data

Erick Cantú-Paz∗ Sen-ching S. Cheung Chandrika Kamath

Abstract

High-resolution computer simulations produce large volumes
of data. As a first step in the analysis of these data,
supervised machine learning techniques can be used to
retrieve objects similar to a query that the user finds
interesting. These objects may be characterized by a
large number of features, some of which may be redundant
or irrelevant to the similarity retrieval problem. This
paper presents a comparison of six dimensionality reduction
algorithms on data from a fluid mixing simulation. The
objective is to identify methods that efficiently find feature
subsets that result in high accuracy rates. Our experimental
results with single- and multi-resolution data suggest that
standard forward feature selection produces the smallest
feature subsets in the shortest time.

1 Introduction

Computer simulations provide qualitative and quantita-
tive insights into physical phenomena. Simulations are
particularly useful when the phenomena are too com-
plex to be studied analytically or too expensive, im-
pratical, or dangerous to study experimentally. How-
ever, computer simulations generate large volumes of
data that require specialized tools to be analyzed. This
paper describes a component of a system that can be
used as a first step in the analysis of simulation data by
retrieving objects similar to a query that the user finds
interesting. The system uses classification algorithms
to incorporate the user feedback on the quality of the
solutions returned.

The objects are described by a feature vector that
may contain a large number of features, some of which
may be redundant or irrelevant to the task of finding
objects similar to a query. Avoiding irrelevant or re-
dundant features is important because they may have
a negative effect on the accuracy of the classifier. In
addition, using fewer features will result in faster re-
trievals from a large database of feature vectors. Search-
ing exhaustively for the best feature subset is imprac-
tical for high-dimensional data (if objects are described
by d features, there are 2d possible feature subsets) and
therefore heuristic methods are used. An alternative
for reducing the dimensionality is to project the data to
a lower-dimensionality space that is constructed with

∗Center for Applied Scientific Computing, Lawrence Livermore

National Laboratory, 7000 East Avenue, Livermore, CA 94550

characteristics that seem desirable, such as orthogonal-
ity.

This paper compares six dimensionality reduction
algorithms on data from a fluid mixing simulation. We
use four “wrapper” algorithms, which use the perfor-
mance of a classifier on candidate feature subsets to
guide the search, as well as principal components anal-
ysis (PCA) and a variable elimination algorithm based
on PCA. The objective of this work is to identify an al-
gorithm that efficiently finds a compact representation
of the data that results in high accuracy rates.

The next section briefly describes the similarity-
based object retrieval system that we implemented.
Section 3 describes the data and the algorithms used in
this study. Section 4 presents the experimental results
with the various dimensionality reduction algorithms.
Finally, section 5 summarizes the paper and presents
our conclusions.

2 Similarity-based Object Retrieval

Similarity-based object retrieval (SBOR) is a system
being developed as part of the Sapphire project at
Lawrence Livermore National Laboratory.1 The mo-
tivation for the system is to support searches in simu-
lation data that are similar to those in content-based
image retrieval (CBIR) systems. However, instead of
focusing on the entire image as is often done in CBIR,
we are interested in retrieving sub-images, or objects, in
the data. This is because in the analysis of simulation
data the user is not interested in the entire output at
any time step, but in a smaller region of this output.
In addition, the modules of such a retrieval tool can
be applied to other problems in the analysis of simula-
tion data. As an example, consider the code validation
problem in Figure 1, where we need to determine how
close a simulation is to an experiment. One approach to
this would be to consider each of the mushroom-shaped
objects in the simulation and measure its similarity to
the corresponding object in the experiment. This can
be done using the modules of an SBOR system. Having
quantitatively measured the similarity of these objects

1http://www.llnl.gov/casc/sapphire

Figure 1: The left image shows the flow pattern of
a Richtmyer-Meshkov experiment performed at Los
Alamos National Laboratory. The same experiment is
simulated by high resolution numerical methods and the
result is shown in the right image [9].

taken in isolation, we could then combine these mea-
sures with additional information such as the number
and locations of the mushrooms to quantitatively com-
pare the experimental image with the ones from the
simulation.

In a typical similarity search conducted using the
SBOR system, a user first identifies an object of interest
in an image from the image database and defines a
rectangular region on the image as the query. Then,
the user specifies the images to query on as well as
the features to be used in the similarity search. The
user can select from a large array of features, which
are described in more detail in the next section. The
SBOR system uses this information to populate a
feature database with feature vectors extracted from the
images. For this task, we adopt a simple sliding-window
approach. A tile window, with the same dimensions as
the query image, is moved across each image in a fixed-
size step. A feature vector is computed for the part
of the image under the tile window at each location.
In the experiments reported here, a small step size of
eight pixels is used for both the horizontal and vertical
directions.

In order to retrieve objects that are similar to the
query object, but much smaller or much larger, we also
support multiresolution tiling. Using a simple Gaussian
pyramid, obtained through convolution with a Gaussian
filter and sub-sampling, we obtain an image that is half
as large as the original image in each dimension. When

Distance Measures Definitions

Manhattan or l1
∑

|xi − yi|
Euclidean or l2

∑

(xi − yi)
2

Chebychev or l∞ max |xi − yi|
Kullback-Leibler Divergence

∑

xi log(xi/yi)

Chi-Square
∑ x2

i
−y2

i

yi

Table 1: Table of different types of distance measures.
X = (x1, . . . , xn) and Y = (y1, . . . , yn) are the two
feature vectors. The range of summation or maximum
is always from 1 to n.

this coarse resolution image is tiled using tiles of the
same size as the original query tile, we are in effect
using larger tiles on the original image. This allows
us to find objects larger than the query object, while
performing fewer computations with the smaller image
as compared to increasing the tile size. In addition, as
these larger tiles often contain more than one object,
we do object segmentation on the image prior to the
multiresolution. The features are then calculated for
each object in the larger tile, assuming that the object
was the only one in the tile. Instead of a Gaussian
filter, we can also use a wavelet pyramid. In addition,
several levels of multiresolution are possible, enabling
us to identify object much larger than the query object.
For objects smaller than the query, we just use a smaller
tile size by reduction each dimension by two for each
level of reduction.

With the feature database in place, we seek out the
feature vectors in the database that are “similar” to the
feature vector corresponding to the query image. To
properly define the notion of similarity, we assume that
there is a distance, or dissimilarity, function associated
with each type of feature. Two feature vectors that are
a small distance apart are regarded to be more similar
to each other than those with a large distance between
them. We use some of the most common distance
functions as described in table 1.

Inductive machine learning techniques can also be
used to improve the retrieval of objects similar to a
query. To do this, we first need to create a training set
with positive and negative examples. One alternative
we have tried is to present the top results of a distance-
based similarity search and ask the user to assign pos-
itive and negative labels to the results based on the
perceived similarity to the query. These labeled results
are then used to train a classifier, which is applied to
the entire feature database. The classifier assigns pos-
itive and negative labels to each feature vector in the
database and the positive examples are presented to the
user. This approach has produced improvements over

Figure 2: The results of applying the naive Bayes
classifier to retrieve objects similar to a query. The first
figure is the query. A hand-tuned distance-based search
retrieved the query and the second figure. A naive
Bayes classifier returned all three results. Note that
the figures two and three are slightly displaced versions
of the query.

simple distance-based similarity searches as illustrated
in figure 2. The figure shows three objects that were
retrieved by a naive Bayes trained using positive ex-
amples identified by a simple distance-based search and
validated by the user. The similarity search was able
to retrieve only the query and the first object shown
in the feature. The trained naive Bayes retrieved two
additional objects and did not return any false positives.

Having established that machine learning tech-
niques can improve the retrieval accuracy in the con-
text of our application, we next attempted to reduce the
number of features being used in the similarity search.
In our experiences we found that the performance of
the system strongly depends on the choice of features
and some experimentation is required to find a set of
features that produce acceptable results. Moreover, the
best choice of features for one query may not be appro-
priate for a different query. Thus, it seemed appropriate
to investigate the role of feature selection in improv-
ing the retrieveal in the SBOR system. Fewer features
would not only help address the “curse of dimension-
ality” problem, but also enable more efficient retrieval
through the use of advanced data structures. In this
paper, we compare and contrast the different feature
selection methods we used in the context of similarity-
based object retrieval in simulation data.

3 Methods

This section briefly describes the data and the algo-
rithms used in this study. More detailed descriptions
are available elsewhere [1].

3.1 Simulation Data. For the work in this paper,
we consider the data from a high resolution 3-D shock
tube simulation performed on a 2048 × 2048 × 1920
grid over 27,000 time steps, obtained on 960 nodes of

the IBM-SP Sustained Stewardship TeraOp system at
Lawrence Livermore National Laboratory [7]. At the
beginning of the simulation, two gases are separated
by a membrane in a tube; then the membrane is
pushed against a wire mesh. The simulation models
the resulting mixing of the two gases.

Several variables are output by the simulation at
each grid point at each time step. These variables
include pressure, density, and velocity. In this work,
we focus on the entropy, which is available as one byte
of information per grid point. The entropy is scaled
linearly with a minimum of 0 and a maximum of 255.

3.2 Features. The features included in the SBOR
system range from simple pixel statistics to complicated
visual attributes such as shape and texture. They pro-
vide a general and compact description of the distribu-
tion of pixel values inside a tile image. We focus primar-
ily on features that are scale, rotation, and translation
invariant. The features used in our experiments include:

Simple Features This set of features consists of the
mean, the standard deviation, the maximum, and
the minimum of all pixel values in a tile image.

Histogram This is a 16-bin histogram of pixel values
in a tile image. The bins are uniform across the
dynamic range.

ART The Angular Radial Transform (ART) belongs
to a broad class of shape analysis tools based on
moments [8]. ART projects a two-dimensional
signal within the unit circle onto a set of complex
orthonormal basis. Our implementation of ART
is based on the region-shape descriptor defined
in MPEG-7 [5, ch. 15]. functions. Following
the MPEG-7 standard, twelve angular basis and
three radial basis are used. This results in a 35-
dimensional feature vector as the first normalized
coefficient is always one.

Binary ART The Binary ART feature is just the ART
feature applied to the tile in which the objects
have been extracted by segmentation using simple
thresholding.

Using all the features above results in a feature
vector with 90 elements. In addition, some of the
experiments include the following features:

Simple Geometry The simple geometry feature con-
tains the parameters of the ellipse that best repre-
sents the distribution of the pixel values. It con-
sists of five numbers: the location of the centroid,
the lengths of the major and minor axes, and the

angle between the major and the x axes. To make
this feature scale invariant, the coordinates of the
centroid are normalized by the dimension of the tile
image, and the lengths of the major and minor axes
are normalized by the diagonal of the tile image.

Binary Simple Geometry This feature is just the
simple geometry feature applied to a tile in which
the objects have been extracted by segmentation
using simple thresholding. All object pixels are set
equal to 255, and the background to 0.

Geometric Moments The geometric moment fea-
tures are the seven functions derived from the nor-
malized central moments of an image as defined by
Hu in [2]. These moment funcitions are used to
represent the shape of an image. They are scale,
translation and rotation invariant, making them
ideal for use in our application. As the values of
these moment functions can be quitre different, we
use the natural logarithm of the absolute value of
the functions instead of the functions directly.

Binary Geometric Moments This is the Geometric
moments feature applied to the tile in which the
objects have been extracted by segementation using
simple thresholding.

Using these additional features results in a feature
vector with 114 elements.

3.3 Derived features. The feature vectors in the
feature database contain fairly low-level features such as
ART coefficients and the bin counts for the histograms.
We first tried using these low-level features directly as
input to machine learning techniques. However, we real-
ized that the individual elements in the feature vectors
do not represent anything meaningful in this context.
Consider, for example, basing a discrimination on the
10-th bin of the histogram or on the fourth ART co-
efficient. So, we also computed a set of “derived” fea-
tures which are different distances between features of
the query and features of each element in the database.
The distances we used are described in table 1. For
example, a derived feature might be the L1 distance be-
tween the intensity histogram of the query and the his-
togram of each example in the feature database. There
is a new derived feature vector for each feature vector
in the database.

Calculating derived features also has the advantage
of reducing the dimensionality of the problem. For
example, the first data set used in the experiments has
feature vectors with 90 elements, but only 20 derived
features. The derived features corresponding to the
same original feature as highly correlated. However,

there is no obvious way to choose among the different
distances. An exploratory data analysis showed that
simple thresholding on any one of these distances would
result in several false positive results, but several of
these distances considered together would reduce the
number of errors.

We do however note that using distances as the
derived features implies that the features are dependent
on the query, and must be recalculated as the query
changes.

3.4 Data Preparation. For our experiments, we
selected six representative 2-D slices of the simulation
data. For testing purposes, we applied the following six
transformations to each of the images:

• Anti-clockwise rotation by 36o (rot36), 90o (rot90),
and 150o (rot150).

• Reflection about the vertical axis in the middle
(flip).

• Morphological erosion (erode) and dilation (dilate)
by a 3× 3 cross-shaped element.

These transformations allow us to mimic the behav-
ior of the data as the simulation evolves. Examples of
these transformation together with the original image
are shown in Figure 3.

We follow the procedure described in Section 2
for testing: a 64 × 64 tile window is moved across
each transformed slice in a step-size of eight pixels
horizontally and vertically.

3.5 Training data. To compare systematically dif-
ferent feature selection algorithms, we follow a different
approach to generate the training sets. Instead of a
tedious and error-prone manual labelling, we identify
as the “ground truth” all the feature vectors that cor-
respond to tiles that overlap more than 90% with the
query tile. A partial-overlap criteria is used because
first, features should be robust against small transla-
tions induced by partial overlapping, and second, com-
plete overlap is simply unachievable for some of the
transformations such as rot36 and rot150. The positive
examples for the training set come from the ground-
truth examples. The negative examples are obtained by
sampling randomly from the feature vectors that corre-
spond to tiles with less than 50% overlap with the query
tile. We ensure that the training and testing sets are
disjoint. This procedure guarantees that the positive
examples are visually similar with the query image, but
we recognize that the procedure may omit relevant tiles
that are not near the query tile.

Figure 3: One of the original 2-D slices and the corresponding five spatial transformations.

3.6 Feature Selection Algorithms. One approach
to feature selection is to preprocess the data and select
features based on properties that good feature sets are
presumed to have, such as orthogonality and high infor-
mation content. This is known as the filter approach [4].
An alternative to preprocessing the data is the wrapper
approach. The key idea is to consider the induction al-
gorithm as a black box to be used by a search algorithm
to evaluate each candidate feature subset [4]. The fea-
ture subset with the higher evaluation is selected as the
final set on which to run the inducer. The resulting
classifier should then be tested on data not used during
the search.

Numerous search algorithms have been used to
search for feature subsets [3]. Greedy algorithms that
add or delete a single feature from the candidate feature
subset are common. There are two basic variants:
forward selection (FS) and backward elimination (BE).
Forward selection starts with an empty set of features.
It tentatively adds each feature that is not already in
the candidate set and selects the feature that results in
the highest estimated performance. The search finishes
if no feature results in an improvement over the current
subset. Backward elimination works in an analogous
way, starting from the full set of features and tentatively
deleting each feature not deleted previously.

Greedier versions of forward selection and backward

elimination are possible. Instead of selecting or deleting
the best of the features not already chosen, a greedier
algorithm adds or deletes each candidate feature imme-
diately if it produces an improvement over the current
subset. These greedier versions explore fewer feature
subsets, but risk getting trapped in local optima more
easily than the standard algorithms. We decided to ex-
periment with these greedier versions because we are
interested in fast algorithms that can be used as part
of an interactive system. These versions are sensitive
to the order in which the features are considered to be
added or deleted. We report the results of the best fea-
ture subset found in five random restarts that present
the features to the algorithms in random order.

For our experiments, we chose a Naive Bayes clas-
sifier primarily because of its speed and simplicity. In
our implementation, the naive Bayes assumes a normal
distribution for the numeric features.

For each query, we present the training set to each
feature selection algorithm. The wrappers use 10-fold
crossvalidation to estimate the generalization of the
naive Bayes with each proposed feature subset. The
best feature subset found is used to train the naive Bayes
using the entire training set. The trained classifier is
then applied to the testing data that has not been seen
by the algorithm until this point and different accuracy
statistics are measured.

In addition to the wrapper algorithms we use prin-
cipal component analysis (PCA). PCA produces mutu-
ally orthogonal linear combinations of the variables in
the original data, such that the direction of the first
principal component (PC) corresponds to the direction
of maximum variance in the data, the direction of the
second PC corresponds to the direction of second largest
variance in the data, and so on. The data are usually
standardized to have mean zero and variance one before
computing the PCs to avoid the dominance of variables
with large variances. The principal components are the
eigenvectors of the data covariance matrix, with the first
PC being the eigenvector corresponding to the largest
eigenvalue. In many cases, the first few PCs explain
most of the variability in the data and therefore provide
a compact representation of the important features in
the data. We chose to use enough PCs to explain 90%
of the variability in the data.

We also adopted a method suggested by Mardia et
al. [6] to use the PCs to eliminate unimportant vari-
ables. Starting with the eigenvector that corresponds
to the smallest eigenvalue of the covariance matrix, we
discarded the variable with the largest coefficient (in ab-
solute value) in that vector. This variable is considered
the least important. We then proceed to the eigenvec-
tor that corresponds to the second largest eigenvalue
and discarded the variable with the largest coefficient,
among the variables not discarded earlier. We contin-
ued with this process until we had identified the k most
important variables, where k is the number of principal
components that explained 90% of the variance of the
original data.

All programs were developed in C++ and compiled
with g++ version 3.1. The programs were executed on
a single processor of a Linux (Red Hat 7.3) workstation
with dual 2.4 GHz Intel Xeon processors and 512 Mb of
memory.

4 Results

We performed two series of experiments. In the first
series we used data at a single resolution, while in the
second series we used multiresolution data.

All the experiments consider the six queries shown
in figure 4. All the queries are 64× 64 pixels.

4.1 Single Resolution Data. For the first series of
experiments, we use the procedures described in the
previous section to build training and testing sets for
the original and modified images separately. Initially,
we search for feature subsets and test the algorithms
using the data from the original images exclusively.
As explained in the previous section, the training and
testing sets are disjoint, but in this experiment they

Figure 4: The six queries used in the experiments.

are obtained from the same set of original images. The
results of these experiments are in table 2. We observe
that high precision and recall values can be obtained
using all the features, but the results (especially the
recall) improve by using the best feature subsets found
by the search algorithms.

In the case of Query 6, the results are notably
better, but there are few cases where using feature
subsets result in slightly worse results.

In terms of the number of features selected, the re-
sults reported in table 3 show that forward selection
clearly selects much fewer features than the other meth-
ods. As expected the backward elimination algorithms
always selected many more features than the forward
selection algorithms. The simple forward selection ex-
amined the fewer feature subsets, which means that it
is the fastest of the algorithms that we considered.

A more challenging experiment is to use the data
from the original images to search for feature subsets,
train the Naive Bayes with the best subset of features
from the original images, and test it on the modified
images. The results are in table 4. As expected,
the performance is worse than when the naive Bayes
was tested on the original data. In particular, with
queries 3 and 4 the previous experiment had perfect
results, and in this experiment the naive Bayes could not
identify a single instance as positive when using all the
features. However, in most cases, the feature selection
algorithms identified feature subsets that resulted in
notable improvements.

The forward selection algorithm again delivers con-
sistently good results over all the queries. The greedy
forward selection sometimes delivers the best results,
but in some cases (Q3 and Q4) it delivers much worse
results than FS.

The size of the resulting feature subsets for this ex-

Q1 Q2 Q3 Q4 Q5 Q6

Method Prec Recall Prec Recall Prec Recall Prec Recall Prec Recall Prec Recall

ALL 97.44 86.36 100.0 94.59 100.0 100.0 100.0 100.0 96.55 90.32 98.04 42.74
FS 97.44 97.44 97.14 94.44 100.0 100.0 100.0 100.0 96.55 93.33 94.12 69.57
BE 97.44 90.48 100.0 94.59 100.0 100.0 100.0 100.0 96.55 90.32 98.04 58.82

Greedy FS 97.44 79.17 94.29 94.29 100.0 100.0 100.0 100.0 96.55 91.80 94.12 60.00
Greedy BE 97.44 84.44 100.0 94.59 100.0 100.0 100.0 100.0 96.55 88.89 94.12 68.57

PCA 92.88 87.80 94.11 88.88 95.12 95.12 96.87 96.87 96.61 87.69 96.07 52.12
PCA Filter 100.0 82.97 94.28 91.66 100.0 97.61 100.0 100.0 98.28 87.69 94.11 50.00

Table 2: Results of experiments training and testing with data from the original images.

Method Q1 Q2 Q3 Q4 Q5 Q6

ALL 20 20 20 20 20 20
FS 2 2 2 2 4 4
BE 19 19 18 19 18 13

Greedy FS 12 3 2 7 7 9
Greedy BE 18 19 18 17 18 6

PCA 4 5 4 5 4 5
PCA Filter 4 5 4 5 4 5

Table 3: Number of features selected on experiments training and testing with the 20 derived features from the
original images.

periment are presented in table 5. The standard forward
selection selected the smallest feature subset, while the
backward elimination algorithms selected most of the
features. PCA and PCA filter use only the first three
or four PCs, but their accuracy on some of the queries
(especially Q1–Q4) is inferior to the wrapper methods.

Since we intend to use feature selection as part of an
interactive system, the execution times are important.
On these experiments with single resolution data, PCA
and the standard forward selection algorithm require
less than one second to reach their solutions. The
backward elimination algorithms require the longest
times, and the greedy version (using five restarts) is the
slowest algorithm, requiring approximately 15 seconds
to run.

4.2 Multiresolution Data. For the second series of
experiments we use the multiresolution data described
in the previous section. These data include data from
the original as well as from the modified images. We
experimented with the derived features (distances) as
we did in the previous set of experiments as well as
with the original features extracted from the tiles.

The precision and recall results with the derived
features are presented in table 6. We observe the same
trends as with the previous experiments: Using all
the features gives good results but using the selected
feature subsets can improve the results. Again, forward

selection gives most of the best results and always selects
the smallest feature subset, as can be observed from
table 7. The backward elimination algorithms keep
most of the features.

In terms of execution time, the sequential feature
selection is the fastest algorithm, requiring 1–2 seconds.
PCA and PCA Filter require approximately the same
time as the greedy forward selection and backward
elimination (approx. 20–30 seconds). The multi-restart
greedy BE is again the slowest algorithm (approx. 40
seconds).

Using the original raw features is attractive because
it would eliminate the computation of derived features.
While this computation is not too burdensome, elimi-
nating it may result in an improvement in performance.
The precision and recall obtained with the raw features
are shown in table 8. These results suggest that the
quality of the results remains approximately equal to
using the derived features, when all the features are in-
put to the naive Bayes. However, the performance after
selecting a subset of features is generally better when
derived features are used.

Once again, forward selection selected the fewest
features and was the fastest algorithm. As expected
because of the higher dimensionality, PCA is now the
slowest algorithm, requiring approximately 65 seconds
to run.

Q1 Q2 Q3 Q4 Q5 Q6

Method Prec Recall Prec Recall Prec Recall Prec Recall Prec Recall Prec Recall

ALL 23.53 98.25 79.27 97.45 0.00 0.00 0.00 – 91.82 97.82 96.05 86.10
FS 72.69 98.86 77.20 98.03 95.28 99.51 61.93 97.83 96.68 98.44 91.19 92.59
BE 20.59 98.00 79.27 97.45 0.00 0.00 0.00 – 91.30 98.08 96.05 89.77

Greedy FS 75.63 96.77 94.82 97.86 19.81 100.0 41.74 98.91 92.33 98.90 94.53 89.88
Greedy BE 18.49 97.78 90.16 97.75 0.00 0.00 79.36 99.43 91.56 98.35 92.10 91.27

PCA 0 – 49.22 95.95 0 – 46.29 97.08 89.37 96.10 91.18 91.18
PCA Filter 0 – 38.86 98.68 0 – 46.33 99.01 90.79 98.06 93.61 88.25

Table 4: Results of experiments training with data from the original images and testing with data from the
modified images.

Method Q1 Q2 Q3 Q4 Q5 Q6

FS 2 2 2 3 4 7
BE 19 19 18 18 19 12

Greedy FS 5 2 2 4 6 8
Greedy BE 18 17 19 19 17 4

PCA 3 4 3 4 3 4
PCA Filter 3 4 3 4 3 4

Table 5: Number of features selected on experiments training with 20 derived features from the original data and
testing with data from the modified images.

Q1 Q2 Q3 Q4 Q5 Q6

Method Prec Recall Prec Recall Prec Recall Prec Recall Prec Recall Prec Recall

ALL 85.71 100.0 95.65 78.57 100.0 84.21 100.0 76.92 97.73 67.19 100.0 36.89
FS 92.86 100.0 95.65 91.67 100.0 100.0 100.0 100.0 95.45 91.30 52.63 54.05
BE 85.71 100.0 95.65 81.48 100.0 80.00 100.0 76.92 97.73 67.19 100.0 43.68

Greedy FS 78.57 100.0 95.65 81.48 100.0 76.19 100.0 100.0 97.73 91.49 60.53 76.67
Greedy BE 85.71 92.31 95.65 81.48 100.0 80.00 100.0 76.92 97.73 84.31 100.0 50.00

PCA 60.00 75.00 100.0 73.08 93.33 100.0 84.62 100.0 100.0 92.31 93.02 61.54
PCAFilter 100.0 70.00 100.0 45.45 100.0 86.96 84.62 91.67 97.50 86.67 100.0 35.45

Table 6: Results of experiments with multiresolution data using the 40 derived features.

Method Q1 Q2 Q3 Q4 Q5 Q6

FS 3 2 2 2 1 4
BE 38 39 37 39 38 32

Greedy FS 4 9 4 2 4 5
Greedy BE 37 25 35 39 14 12

PCA 9 9 9 9 9 8
PCA Filter 9 9 9 9 9 8

Table 7: Number of feature subsets of experiments training and testing with multiresolution data using the 40
derived features.

Q1 Q2 Q3 Q4 Q5 Q6

All 85.71 75.00 100.0 71.43 100.0 80.00 84.62 84.62 97.50 75.00 100.0 59.09
FS 42.86 100.0 80.00 85.71 80.00 88.89 76.92 90.91 87.50 94.59 76.92 73.17
BE 85.71 75.00 100.0 71.43 100.0 80.00 84.62 84.62 97.50 78.00 100.0 59.09

Greedy FS 71.43 90.91 93.33 87.50 100.0 100.0 84.62 91.67 97.50 97.50 97.44 84.44
Greedy BE 85.71 75.00 100.0 71.43 100.0 80.00 84.62 84.62 97.50 81.25 100.0 66.10

PCA 94.44 94.44 100.0 100.0 100.0 100.0 100.0 92.31 100.0 86.67 97.37 63.79
PCAFilter 100.0 70.00 100.0 45.45 100.0 86.96 84.62 91.67 97.50 86.67 100.0 35.45

Table 8: Results of experiments with multiresolution data using the original 114 features.

Method Q1 Q2 Q3 Q4 Q5 Q6

forward 3 3 3 3 6 7
backward 112 113 113 113 112 113

greedy forward 5 8 13 6 11 22
greedy backward 112 112 113 112 105 103

PCA 9 10 10 10 9 9
PCAFilter 9 10 10 10 9 9

Table 9: Number of feature subsets of experiments training and testing with multiresolution data using the
original 114 features.

5 Summary and Conclusions

High-resolution simulations are useful to study complex
phenomena, but produce large amounts of data that
require specialized tools to be analyzed effectively. A
common action in the analysis of simulation data is
to find objects that are similar to an object that the
human analyst finds intesting. For this task, we are
building a similarity-based object retrieval system that
uses (among other options) classification algorithms to
retrieve objects similar to a query. This paper presents
results of an experimental comparison of six methods
that attempt to reduce the dimensionality of the input
to the classifier.

We compared four wrapper feature selection algo-
rithms to PCA and a variable elimination method based
on PCA. We performed experiments with single- and
multi-resolution data. The experimental results suggest
that, in all cases, standard forward selection returns the
smallest feature subsets in the shortest time and these
feature subsets generally result in high recall and pre-
cision. For these reasons, forward selection will likely
become the default option in our system.

We are currently investigating the performance of
the feature selection algorithms using other classifiers
that can be used in the SBOR system, such as decision
trees and nearest neighbors. Future work will consider
other dimensionality reduction methods such as random
projections as well as incorporating active learning
techniques to use the human analyst’s time as effectively
as possible.

Acknowledment

UCRL-CONF-200095. This work was performed under
the auspices of the U.S. Department of Energy by
University of California Lawrence Livermore National
Laboratory under contract No. W-7405-Eng-48.

References

[1] E. Cantú-Paz and C. Kamath. Retrieval of similar
objects in simulation data using machine learning
techniques. In Proceedings of the Conference on Image

Processing: Algorithms and Systems III.
[2] M. K. Hu. Visual pattern recognition by moment

invariants. IRE Transactions on Information Theory,
8(2):179–187, 1962.

[3] A. Jain and D. Zongker. Feature selection: evalua-
tion, application and small sample performance. IEEE

Transactions on Pattern Analysis and Machine Intel-

ligence, 19(2):153–158, 1997.
[4] G. John, R. Kohavi, and K. Phleger. Irrelevant fea-

tures and the feature subset problem. In Proceedings of

the 11th International Conference on Machine Learn-

ing, pages 121–129. Morgan Kaufmann, 1994.
[5] B.S. Manjunath, P. Salembier, and T. Sikora, edi-

tors. Introduction to MPEG-7: Multimedia Content

Description Interface. John Wiley & Sons, Ltd., 2002.
[6] K.V. Mardia, J. T. Kent, and J.M. Bibby. Multivariate

Analysis. Academic Press, 1995.
[7] A. Mirin et al. Very high resolution simulation of com-

pressible turbulence on the IBM-SP system. Techni-
cal Report UCRL-JC-134237, Lawrence Livermore Na-
tional Laboratory, 1999.

[8] R. Mukundan and K. R. Ramakrishnan. Moment

Functions In Image Analysis: Theory and Applica-

tions. World Scientific, 1988.
[9] W. Rider et al. Using Richtmyer-Meshkov driven

mixing experiments to impact the development
of numerical methods for compressible hydrody-
namics. In Proceedings of the Ninth Interna-

tional Conference on Hyperbolic Problems Theory,

Numerics, Applications, pages 84 – 88, 2002.
http://www.acm.caltech.edu/hyp2002/program.html.

Approved for public release; further dissemination
unlimited

